Differential interaction of glimepiride and glibenclamide with the beta-cell sulfonylurea receptor. I. Binding characteristics.
نویسندگان
چکیده
Glimepiride is a novel sulfonylurea drug for treatment of non-insulin-dependent diabetes mellitus with higher blood sugar lowering efficacy in diabetic patients than glibenclamide raising the question whether this characteristics is in line with different binding of glimepiride and glibenclamide to the beta-cell sulfonylurea receptor. Scatchard plot analysis of [3H]sulfonylurea binding to membranes isolated from rat beta-cell tumors and (RINm5F) insulinoma cells and to RINm5F cells demonstrated that glimepiride has a 2.5-3-fold lower affinity than glibenclamide. This corresponded well to the 8-9-fold higher koff and 2.5-3-fold higher kon rates of glimepiride compared to glibenclamide as revealed by the dissociation and association kinetics of [3H]sulfonylurea binding and the Kd values calculated thereof. In agreement, the concentrations required for half-maximal displacement of [3H]sulfonylurea bound to beta-cell membranes were significantly higher for glimepiride compared to glibenclamide. However, the binding affinity of glimepiride measured by both equilibrium binding and kinetic binding studies upon solubilization of beta-cell tumor membranes and RINm5F cell membranes increased up to the value for glibenclamide. This was primarily based on a drastic decrease of the dissociation rate constant of glimepiride whereas the kinetics of glibenclamide binding remained largely unaffected upon solubilization. These data suggest that the Kd value alone is not sufficient for characterization of a sulfonylurea drug, since the kinetic binding parameters may also determine its acute blood sugar lowering efficacy.
منابع مشابه
Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion.
Incretin-related drugs and sulfonylureas are currently used worldwide for the treatment of type 2 diabetes. We recently found that Epac2A, a cAMP binding protein having guanine nucleotide exchange activity toward Rap, is a target of both incretin and sulfonylurea. This suggests the possibility of interplay between incretin and sulfonylurea through Epac2A/Rap1 signaling in insulin secretion. In ...
متن کاملCharacterization, purification, and affinity labeling of the brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel.
Sulfonylurea and particularly glibenclamide are potent blockers of ATP-regulated K+ channels in insulin-secreting cells. A very good correlation exists between binding of sulfonylurea to brain and insulinoma cell membranes. The [3H]glibenclamide-binding component from pig brain microsomes was solubilized with digitonin with a complete retention of its properties of interaction with glibenclamid...
متن کاملInteraction of the sulfonylthiourea HMR 1833 with sulfonylurea receptors and recombinant ATP-sensitive K(+) channels: comparison with glibenclamide.
The novel sulfonylthiourea 1-[[5-[2-(5-chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl]-3-methylthiourea (HMR 1883), a blocker of ATP-sensitive K(+) channels (K(ATP) channels), has potential against ischemia-induced arrhythmias. Here, the interaction of HMR 1883 with sulfonylurea receptor (SUR) subtypes and recombinant K(ATP) channels is compared with that of the standard sulfonylurea, glibe...
متن کاملBiol. Pharm. Bull. 29(9) 1983—1985 (2006)
racemate. S-Enantiomer of warfarin has 3 to 5 times higher anticoagulant activity than the R-enantiomer. Therefore, changes in the disposition of S-warfarin will affect more significantly to its anti-coagulation activity of warfarin than that of R-warfarin. S-Warfarin is mainly metabolized to 7-hydroxylated metabolite by cytochrome P450 2C9 (CYP2C9). More than 10 genotypes of CYP2C9 are demonst...
متن کاملOATP1B3 is expressed in pancreatic β-islet cells and enhances the insulinotropic effect of the sulfonylurea derivative glibenclamide.
Organic anion transporting polypeptide OATP1B3 is a membrane-bound drug transporter that facilitates cellular entry of a variety of substrates. Most of the previous studies focused on its hepatic expression and function in hepatic drug elimination. In this study, we report expression of OATP1B3 in human pancreatic tissue, with the abundance of the transporter localized in the islets of Langerha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1191 2 شماره
صفحات -
تاریخ انتشار 1994